Algebra 2 Course

Unit 4 - Worksheet 10 -

Factor the Sum of Cubes and

 Difference of Cubes, Part 1Algebra 2 Course - Unit 4 - Worksheet 10 - The Sum of Cubes and Difference of Cubes, Part 1

1. Factor the polynomial below.

$$
x^{3}-64
$$

2. Factor the polynomial below.

$$
27 y^{3}+1
$$

3. Factor the polynomial below.

$$
8 x^{3}-27
$$

4. Factor the polynomial below.

$$
64 a^{3}+27
$$

5. Factor the polynomial below.

$$
64 w^{3}-8
$$

6. Factor the polynomial below.

$$
5 x^{3}+625
$$

7. Factor the polynomial below.

$$
8 u^{3}-125
$$

8. Factor the polynomial below.

$$
125 x^{3}+216 y^{3}
$$

9. Factor the polynomial below.

$$
64 b^{3}-27 c^{3}
$$

10. Factor the polynomial below.

$$
x^{3}+y^{6}
$$

Answers - Algebra 2 Course - Unit 4 - Worksheet 10 - The Sum of Cubes and Difference of Cubes, Part 1

1. Factor the polynomial below.

$$
x^{3}-64
$$

The polynomial is a difference of cubes, which factors according to the rule:

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

Rewrite the polynomial to identify a and b :

$$
x^{3}-64=(x)^{3}-(4)^{3}
$$

Factor:

$$
\begin{gathered}
(x)^{3}-(4)^{3}=(x-4)\left[x^{2}+x(4)+(4)^{2}\right] \\
=(x-4)\left(x^{2}+4 x+16\right)
\end{gathered}
$$

Answer: $(x-4)\left(x^{2}+4 x+16\right)$
2. Factor the polynomial below.

$$
27 y^{3}+1
$$

The polynomial is a sum of cubes, which factors according to the rule:

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

Rewrite the polynomial to identify a and b :

$$
27 y^{3}+1=(3 y)^{3}+(1)^{3}
$$

Factor:

$$
\begin{aligned}
(3 y)^{3}+(1)^{3} & =(3 y+1)\left[(3 y)^{2}-(3 y)(1)+(1)^{2}\right] \\
& =(3 y+1)\left(9 y^{2}-3 y+1\right)
\end{aligned}
$$

Answer: $(3 y+1)\left(9 y^{2}-3 y+1\right)$
3. Factor the polynomial below.

$$
8 x^{3}-27
$$

The polynomial is a difference of cubes, which factors according to the rule:

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

Rewrite the polynomial to identify a and b :

$$
8 x^{3}-27=(2 x)^{3}-(3)^{3}
$$

Factor:

$$
\begin{aligned}
(2 x)^{3}-(3)^{3} & =(2 x-3)\left[(2 x)^{2}+(2 x)(3)+(3)^{2}\right] \\
& =(2 x-3)\left(4 x^{2}+6 x+9\right)
\end{aligned}
$$

Answer: $(2 x-3)\left(4 x^{2}+6 x+9\right)$
4. Factor the polynomial below.

$$
64 a^{3}+27
$$

The polynomial is a sum of cubes, which factors according to the rule:

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

Rewrite the polynomial to identify a and b :

$$
64 a^{3}+27=(4 a)^{3}+(3)^{3}
$$

Factor:

$$
\begin{gathered}
(4 a)^{3}+(3)^{3}=(4 a+3)\left[(4 a)^{2}-(4 a)(3)+(3)^{2}\right] \\
=(4 a+3)\left(16 a^{2}-12 a+9\right)
\end{gathered}
$$

Answer: $(4 a+3)\left(16 a^{2}-12 a+9\right)$
5. Factor the polynomial below.

$$
64 w^{3}-8
$$

After factoring out a greatest common factor of 8, the polynomial becomes:

$$
64 w^{3}-8=8\left(8 w^{3}-1\right)
$$

Now the polynomial contains a difference of cubes, which factors according to the rule:

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

Rewrite the polynomial to identify a and b :

$$
8\left(8 w^{3}-1\right)=8\left[(2 w)^{3}-(1)^{3}\right]
$$

Factor:

$$
\begin{gathered}
8\left[(2 w)^{3}-(1)^{3}\right]=8(2 w-1)\left[(2 w)^{2}+(2 w)(1)+(1)^{2}\right] \\
=8(2 w-1)\left(4 w^{2}+2 w+1\right)
\end{gathered}
$$

Answer: $8(2 w-1)\left(4 w^{2}+2 w+1\right)$
6. Factor the polynomial below.

$$
5 x^{3}+625
$$

After factoring out a greatest common factor of 5, the polynomial becomes:

$$
5 x^{3}+625=5\left(x^{3}+125\right)
$$

The polynomial contains a sum of cubes, which factors according to the rule:

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

Rewrite the polynomial to identify a and b :

$$
5\left(x^{3}+125\right)=5\left[(x)^{3}+(5)^{3}\right]
$$

Factor:

$$
\begin{gathered}
5\left[(x)^{3}+(5)^{3}\right]=5(x+5)\left[(x)^{2}-(x)(5)+(5)^{2}\right] \\
=5(x+5)\left(x^{2}-5 x+25\right)
\end{gathered}
$$

Answer: $5(x+5)\left(x^{2}-5 x+25\right)$
7. Factor the polynomial below.

$$
8 u^{3}-125
$$

The polynomial is a difference of cubes, which factors according to the rule:

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

Rewrite the polynomial to identify a and b :

$$
8 u^{3}-125=(2 u)^{3}-(5)^{3}
$$

Factor:

$$
\begin{gathered}
(2 u)^{3}-(5)^{3}=(2 u-5)\left[(2 u)^{2}+(2 u)(5)+(5)^{2}\right] \\
=(2 u-5)\left(4 u^{2}+10 u+25\right)
\end{gathered}
$$

Answer: $(2 u-5)\left(4 u^{2}+10 u+25\right)$
8. Factor the polynomial below.

$$
125 x^{3}+216 y^{3}
$$

The polynomial is a sum of cubes, which factors according to the rule:

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

Rewrite the polynomial to identify a and b :

$$
125 x^{3}+216 y^{3}=(5 x)^{3}+(6 y)^{3}
$$

Factor:

$$
\begin{gathered}
(5 x)^{3}+(6 y)^{3}=(5 x+6 y)\left[(5 x)^{2}-(5 x)(6 y)+(6 y)^{2}\right] \\
=(5 x+6 y)\left(25 x^{2}-30 x y+36 y^{2}\right)
\end{gathered}
$$

Answer: $(5 x+6 y)\left(25 x^{2}-30 x y+36 y^{2}\right)$
9. Factor the polynomial below.

$$
64 b^{3}-27 c^{3}
$$

The polynomial is a difference of cubes, which factors according to the rule:

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

Rewrite the polynomial to identify a and b :

$$
64 b^{3}-27 c^{3}=(4 b)^{3}-(3 c)^{3}
$$

Factor:

$$
\begin{gathered}
(4 b)^{3}-(3 c)^{3}=(4 b-3 c)\left[(4 b)^{2}+(4 b)(3 c)+(3 c)^{2}\right] \\
=(4 b-3 c)\left(16 b^{2}+12 b c+9 c^{2}\right)
\end{gathered}
$$

Answer: $(4 b-3 c)\left(16 b^{2}+12 b c+9 c^{2}\right)$
10. Factor the polynomial below.

$$
x^{3}+y^{6}
$$

The polynomial is a sum of cubes, which factors according to the rule:

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

Rewrite the polynomial to identify a and b :

$$
x^{3}+y^{6}=(x)^{3}+\left(y^{2}\right)^{3}
$$

Factor:

$$
\begin{aligned}
(x)^{3}+\left(y^{2}\right)^{3} & =\left(x+y^{2}\right)\left[(x)^{2}-(x)\left(y^{2}\right)+\left(y^{2}\right)^{2}\right] \\
& =(x+y)\left(x^{2}-x y^{2}+y^{4}\right)
\end{aligned}
$$

Answer: $(x+y)\left(x^{2}-x y^{2}+y^{4}\right)$

